Refine Your Search

Topic

Author

Search Results

Technical Paper

Upper-Extremity Injuries From Steering Wheel Airbag Deployments

1997-02-24
970493
In a review of 540 crashes in which the steering-wheel airbag deployed, 38% of the drivers sustained some level of upper extremity injury. The majority of these were AIS-1 injuries including abrasions, contusions and small lacerations. In 18 crashes the drivers sustained AIS-2 or-3 level upper extremity injuries, including fractures of the radius and/or ulna, or of the metacarpal bones, all related to airbag deployments. It was determined that six drivers sustained the fracture(s) directly from the deploying airbag or the airbag module cover. The remaining 12 drivers had fractures from the extremity being flung into interior vehicle structures, usually the instrument panel. Most drivers were taller than 170 cm and, of the 18 drivers, 10 were males.
Technical Paper

Effects of Large-Radius Convex Rearview Mirrors on Driver Perception

1997-02-24
970910
The U.S. currently requires that reai-view mirrors installed as original equipment in the center and driver-side positions be flat. There has recently been interest in using nonplanar mirrors in those positions, including possibly mirrors with large radii (over 2 m). This has provided additional motivation to understand the effects of mirror curvature on drivers' perceptions of distance and speed. This paper addresses this issue by (1) reviewing the concepts from perceptual theory that are most relevant to predicting and understanding how drivers judge distance in nonplanar rearview mirrors, and (2) reviewing the past empirical studies that have manipulated mirror curvature and measured some aspect of distance perception. The effects of mirror curvature on cues for distance perception do not lead to simple predictions. The most obvious model is one based on visual angle, according to which convex mirrors should generally lead to overestimation of distances.
Technical Paper

A Method for Documenting Locations of Rib Fractures for Occupants in Real-World Crashes Using Medical Computed Tomography (CT) Scans

2006-04-03
2006-01-0250
A method has been developed to identify and document the locations of rib fractures from two-dimensional CT images obtained from occupants of crashes investigated in the Crash Injury Research Engineering Network (CIREN). The location of each rib fracture includes the vertical location by rib number (1 through 12), the lateral location by side of the thorax (inboard and outboard), and the circumferential location by five 36-degree segments relative to the sternum and spine. The latter include anterior, anterior-lateral, lateral, posterior-lateral, and posterior regions. 3D reconstructed images of the whole ribcage created from the 2D CT images using Voxar software are used to help identify fractures and their rib number. A geometric method for consistently locating each fracture circumferentially is described.
Technical Paper

Geometric Visibility of Mirror Mounted Turn Signals

2005-04-11
2005-01-0449
Turn signals mounted on exterior rearview mirrors are increasingly being used as original equipment on passenger cars and light trucks. The potential for mirror-mounted turn signals (MMTS) to improve the geometric visibility of turn signals is examined in this paper. A survey of U.S. and UN-ECE regulations showed that the turn signals of a vehicle that is minimally compliant with U.S. regulations are not visible to a driver of a nearby vehicle in an adjacent lane. Measurements of mirror location and window geometry were made on 74 passenger cars and light trucks, including 38 vehicles with fender-mounted turn signals (FMTS). These data were combined with data on driver eye locations from two previous studies to assess the relative visibility of MMTS and conventional signals. Simulations were conducted to examine the potential for signals to be obstructed when a driver looks laterally through the passenger-side window.
Technical Paper

Side Impacts to the Passenger Compartment — Clinical Studies from Field Accident Investigations

1989-02-01
890379
The side impact, recently and currently the subject to of much debate, controversy and proposed NHTSA rule making, is a difficult type of crash to significantly reduce serious injuries and fatalites. Results from real-world crash investigations presents a confusing picture for the near-side passenger compartment crash. A direct relationship between the amount of crush and injury severity levels (MAIS) is not apparent. Exemplar cases of tow-a-way/injury crashes are presented at all AIS injury level of drivers in crashes with direct driver door crush damage.
Technical Paper

Anthropometric and Postural Variability: Limitations of the Boundary Manikin Approach

2000-06-06
2000-01-2172
Human figure models are commonly used to facilitate ergonomic assessments of vehicle driver stations and other workplaces. One routine method of workstation assessment is to conduct a suite of ergonomic analyses using a family of boundary manikins, chosen to represent a range of anthropometric extremes on several dimensions. The suitability of the resulting analysis depends both on the methods by which the boundary manikins are selected and on the methods used to posture the manikins. The automobile driver station design problem is used to examine the relative importance of anthropometric and postural variability in ergonomic assessments. Postural variability is demonstrated to be nearly as important as anthropometric variability when the operator is allowed a substantial range of component adjustment. The consequences for boundary manikin procedures are discussed, as well as methods for conducting accurate and complete assessments using the available tools.
Technical Paper

Anthropometry for WorldSID A World-Harmonized Midsize Male Side Impact Crash Dummy

2000-06-19
2000-01-2202
The WorldSID project is a global effort to design a new generation side impact crash test dummy under the direction of the International Organization for Standardization (ISO). The first WorldSID crash dummy will represent a world-harmonized mid-size adult male. This paper discusses the research and rationale undertaken to define the anthropometry of a world standard midsize male in the typical automotive seated posture. Various anthropometry databases are compared region by region and in terms of the key dimensions needed for crash dummy design. The Anthropometry for Motor Vehicle Occupants (AMVO) dataset, as established by the University of Michigan Transportation Research Institute (UMTRI), is selected as the basis for the WorldSID mid-size male, updated to include revisions to the pelvis bone location. The proposed mass of the dummy is 77.3kg with full arms. The rationale for the selected mass is discussed. The joint location and surface landmark database is appended to this paper.
Technical Paper

Comparison of Methods for Predicting Automobile Driver Posture

2000-06-06
2000-01-2180
Recent research in the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program has led to the development of a new method for automobile driver posture prediction, known as the Cascade Model. The Cascade Model uses a sequential series of regression functions and inverse kinematics to predict automobile occupant posture. This paper presents an alternative method for driver posture prediction using data-guided kinematic optimization. The within-subject conditional distributions of joint angles are used to infer the internal cost functions that guide tradeoffs between joints in adapting to different vehicle configurations. The predictions from the two models are compared to in-vehicle driving postures.
Technical Paper

Methods for Laboratory Investigation of Truck and Bus Driver Postures

2000-12-04
2000-01-3405
Few studies have systematically examined the effects of truck and bus workstation geometry on driver posture and position. This paper presents methods for determining drivers' postural responses and preferred component locations using a reconfigurable vehicle mockup. Body landmark locations recorded using a three-dimensional digitizer are used to compute a skeletal-linkage representation of the drivers' posture. A sequential adjustment procedure is used to determine the preferred positions and orientations of key components, including the seat, steering wheel, and pedals. Data gathered using these methods will be used to create new design tools for trucks and buses, including models of driver-selected seat position, eye location, and needed component adjustment ranges. The results will also be used to create accurate posture-prediction models for use with human modeling software.
Technical Paper

Effective Utilization of In-Vehicle Information: Integrating Attractions and Distractions

2000-11-01
2000-01-C011
The modern passenger vehicle contains numerous sources of information. In one sense, all of the messages sent from in-vehicle devices are attractive, at least from the viewpoint of the designer who has incorporated them into the vehicle to make driving more pleasurable and safer. Yet in another sense, these same messages can present distractions to the driver resulting in diminished driving pleasure and possibly unsafe vehicle control. Thus, a message that at one moment might be attractive and useful to the driver, at a different moment, especially one where attention must be focused outside the vehicle, becomes an unwanted distraction. This paper reviews three sources of in-vehicle information: advanced traveler information systems, safety and collision avoidance systems, and convenience and entertainment systems. A framework for integrating these sub-systems is outlined based upon human-centered design principles and functional characteristics of systems.
Technical Paper

Emulating the Behavior of Truck Drivers in the Longitudinal Control of Headway

1999-11-15
1999-01-3706
This paper describes control system and psychological concepts enabling the development of a simulation model suitable for use in emulating driver performance in situations involving the longitudinal control of the distance and headway-time to a preceding vehicle. The developed model has mathematical expressions and relationships pertaining to the driver's skill in operating the brake and accelerator (“inverse dynamics”) and the driver's perceptual and decision-making capabilities (“desired dynamics”). Simulation results for driving situations involving braking and accelerating are presented to aid in understanding the research work.
Technical Paper

Challenges in Frontal Crash Protection of Pregnant Drivers Based on Anthropometric Considerations

1999-03-01
1999-01-0711
Pregnant occupants pose a particular challenge to safety engineers because of their different anthropometry and the additional “occupant within the occupant.” A detailed study of the anthropometry and seated posture of twentytwo pregnant drivers over the course of their pregnancies was conducted. Subjects were tested in an adjustable seating buck that could be configured to different vehicle package geometries with varying belt anchorage locations. Each subject was tested four times over the course of her pregnancy to examine changes in seat positioning, seated anthropometry, and positioning of the lap and shoulder belts with gestational age. Data collected include preferred seating positions of pregnant drivers, proximity of the pregnant occupant to the steering wheel and airbag module, contours of the subjects’ torsos and abdomens relative to seat-belt centerline contours, and subject perceptions of their seated posture and proximity to vehicle components.
Technical Paper

Automobile Occupant Posture Prediction for Use with Human Models

1999-03-01
1999-01-0966
A new method of predicting automobile occupant posture is presented. The Cascade Prediction Model approach combines multiple independent predictions of key postural degrees of freedom with inverse kinematics guided by data-based heuristics. The new model, based on posture data collected in laboratory mockups and validated using data from actual vehicles, produces accurate posture predictions for a wide range of passenger car interior geometries. Inputs to the model include vehicle package dimensions, seat characteristics, and occupant anthropometry. The Cascade Prediction Model was developed to provide accurate posture prediction for use with any human CAD model, and is applicable to many vehicle design and safety assessment applications.
Technical Paper

ASPECT: The Next-Generation H-Point Machine and Related Vehicle and Seat Design and Measurement Tools

1999-03-01
1999-01-0962
The ASPECT program was conducted to develop new Automotive Seat and Package Evaluation and Comparison Tools. This paper presents a summary of the objectives, methods, and results of the program. The primary goal of ASPECT was to create a new generation of the SAE J826 H-point machine. The new ASPECT manikin has an articulated torso linkage, revised seat contact contours, a new weighting scheme, and a simpler, more user-friendly installation procedure. The ASPECT manikin simultaneously measures the H-point location, seat cushion angle, seatback angle, and lumbar support prominence of a seat, and can be used to make measures of seat stiffness. In addition to the physical manikin, the ASPECT program developed new tools for computer-aided design (CAD) of vehicle interiors. The postures and positions of hundreds of vehicle occupants with a wide range of body size were measured in many different vehicle conditions.
Technical Paper

Methods for Measuring and Representing Automobile Occupant Posture

1999-03-01
1999-01-0959
Many vehicle design and safety assessment applications use physical and virtual representations of vehicle occupants within the vehicle interior. Proper use of these human models requires accurate data concerning vehicle occupant posture and position. This paper presents techniques for characterizing vehicle occupant posture by measuring accessible body landmarks. The landmark locations are used to estimate joint locations that define a kinematic linkage representation of the human body. The resulting posture analysis techniques provide a unified method of measuring and reporting vehicle occupant postures that is suitable for use with both physical and virtual human models.
Technical Paper

Human Subject Testing in Support of ASPECT

1999-03-01
1999-01-0960
The ASPECT program, conducted to develop new Automotive Seat and Package Evaluation and Comparison Tools, used posture and position data from hundreds of vehicle occupants to develop a new physical manikin and related tools. Analysis of the relationships between anthropometric measures established the criteria for subject selection. The study goals and the characteristics of the data collected determined the sampling approach and number of subjects tested in each study. Testing was conducted in both vehicle and laboratory vehicle mockups. This paper describes the subject sampling strategies, anthropometric issues, and general data collection methods used for the program's eight posture studies.
Technical Paper

Investigating Driver Headroom Perception: Methods and Models

1999-03-01
1999-01-0893
Recent changes in impact protection requirements have led to increased padding on vehicle interior surfaces. In the areas near the driver's head, thicker padding can reduce the available headspace and may degrade the driver's perception of headroom. A laboratory study of driver headroom perception was conducted to investigate the effects of physical headroom on the subjective evaluation of headroom. Ninety-nine men and women rated a range of headroom conditions in a reconfigurable vehicle mockup. Unexpectedly, driver stature was not closely related to the perception of headroom. Short-statured drivers were as likely as tall drivers to rate a low roof condition as unacceptable. Statistical models were developed from the data to predict the effects of changes in headroom on the percentage of drivers rating the head-room at a specified criterion level.
Technical Paper

Computer Synthesis of Light Truck Ride Using a PC Based Simulation Program

1999-05-17
1999-01-1796
An easy-to-use computer program for ride analysis was recently developed. The result of this effort-RideSim- predicts time history responses, power spectral density (PSD) functions, and a driver oriented measure of ride comfort. RideSim employs a graphical user interface (called SGUI, for simulation graphical user interface) to control data preparation, simulation execution, animation, and data analysis. The SGUI allows the user to operate the program by pointing and clicking with a mouse, rather than by using cumbersome text commands. It also manages the vehicle dynamics parameters, the resulting simulation output, and results of post-processing analyses (i.e., PSD analysis). The vehicle dynamics model was generated with the AUTOSIM multibody dynamics program. This program uses Kane’s Method and computer algebra to create a parametric dynamics simulation that can be easily linked to the SGUI.
Technical Paper

Driver Status and Implications for Crash Safety

2006-10-16
2006-21-0028
Almost a million people are killed worldwide each year in motor vehicle crashes, over 42,000 of them in the U.S. Human/driver error (or induced error) is the most commonly identified contributing cause according to crash studies, especially studies conducted in the U.S. Accordingly, if crashes are to be reduced, a human-centered approach is needed. As part of its Intelligent Transportation Systems program, the U.S. Department of Transportation (U.S. DOT) is funding several major projects (e.g., VII, IVBSS) concerned with active safety, warnings, and communications. As part of these and other projects, several meta-issues have arisen that deserve further attention.
Technical Paper

ATD Positioning Based on Driver Posture and Position

1998-11-02
983163
Current ATD positioning practices depend on seat track position, seat track travel range, and design seatback angle to determine appropriate occupant position and orientation for impact testing. In a series of studies conducted at the University of Michigan Transportation Research Institute, driver posture and position data were collected in forty-four vehicles. The seat track reference points currently used to position ATDs (front, center, and rear of the track) were found to be poor predictors of the average seat positions selected by small female, midsize male, and large male drivers. Driver-selected seatback angle was not closely related to design seatback angle, the measure currently used to orient the ATD torso. A new ATD Positioning Model was developed that more accurately represents the seated posture and position of drivers who match the ATD statures.
X